Math 259A Lecture 14 Notes

Daniel Raban

October 28, 2019

1 Geometry of Projections

1.1 Geometry of projections in a von Neumann algebra

Let $M \subseteq \mathcal{B}(H)$ be a von Neumann algebra, and let P(M) be the projections in M.

Definition 1.1. Projections $e, f \in P(M)$ are **equivalent** $(e \sim f)$ if there exists a partial isometry $v \in M$ such that $vv^* = e$ and $v^*v = f$ (i.e. $\ell(v) = e, r(v) = f$). We say that e is **dominated** by $f (e \prec f)$ if there exists $f_1 \leq f$ such that $e \sim f_1$ (i.e. there is a partial isometry $v \in M$ such that $vv^* = e$ and $v^*v \leq f$.

Proposition 1.1. For all $x \in M$, $\ell(x) \sim r(x)$.

Proof. This follows from the polar decomposition of x: x = v|x|. Then s(|x|) = r(x), and $|x| \in s(|x|)Ms(|x|)$.

Theorem 1.1 (Paralellogram law). If $e, f \in P(M)$, then $(e \lor f - f) \sim (e - e \land f)$.

Proof. The left hand side is $\ell(e(1-f))$, and the right hand side is r(e(1-f)).

Definition 1.2. The center of M is $Z(M) = M' \cap M$.

Definition 1.3. Let $x \in M$. The **central support** of x is the smallest projection z in Z(M) such that zx = x = xz. We denote this by z(x).

By taking $\bigwedge_{z_i x = x} z_i$, this exists.

Proposition 1.2. z(x) = [MxH].

Proof. Call the right hand side the projection p. Since zx = x, $z \ge p$: $z = uzu^*$ where u is unitary, so $z \ge u\ell(x)u^*$ for all unitary u. So $z \ge \bigvee_u u\ell(x)u^* = [MxH]$ because $\operatorname{span}(U(M)) = M$.

But px = x, and $p \in Z(M)$ because M'MxH = MxH and MMxH = MxH. By the definition of $z, p \ge z(x)$.

Theorem 1.2. Let $e, f \in P(M)$. The following are equivalent:

- 1. $eMf \neq 0$.
- 2. there exist a nonzero $e_1 \leq e$ and a nonzero $f_1 \leq f$ with $e_1 \sim f_1$.
- 3. $z(e)z(f) \neq 0$.

Theorem 1.3 (Comparison theorem). Let $e, f \in P(M)$. There exists a projection in Z(M) such that $ep \prec fp$ or $e(1-p) \succ f(1-p)$.

Proof. Exercise.¹

Corollary 1.1. If $Z(M) = \mathbb{C}$, then $e \prec f$ or $e \succ f$.

Theorem 1.4 (Schröder-Bernstein type theorem). If $e \succ f$ and $f \succ e$, then $e \sim f$.

Proof. Exercise.²

1.2 Vold decomposition

Example 1.1. The left shift on $\ell^2(\mathbb{N})$ is an isometry.

Theorem 1.5 (Vold's decomposition theorem). If $v \in M$ is an isometry (i.e. $v^*v = 1$), then $v = u \oplus v_0$, where there is a projection p with $u^*u = uu^* = p$, $v_0^*v_0 = 1-p$, $v_0v_0^* \leq 1-p$. (So $v_0^n(v_0^*)^n$ is a decreasing sequence of projections decreasing to 0. This decomposition is unique.

Remark 1.1. If p is as above, $v^n(v^*)^n \searrow p$. In particular, if $p_0 = (1-p) - v_0 v_0^*$, then all $v^n p_0(v^n)^*$ are mutually orthogonal.

1.3 Factors and finite projections

Definition 1.4. *M* is a factor if $Z(M) = \mathbb{C}$.

Definition 1.5. $e \in P(M)$ is abelian if eMe is abelian.

Example 1.2. $e \in B(H)$ is abelian if and only if e is a 1-dimensional projection.

Definition 1.6. $e \in P(M)$ is a finite projection if whenever $f \leq e$ and $f \sim e, f = e$.

This is like saying that a set E is finite if the only subset of E that it is in bijection with is E itself.

 $^{^{1}:(^{2}:(}$

Remark 1.2. This is equivalent to the following: for any partial isometry $v \in eMe$ with $v^*v = e$, we have $vv^* = e$; i.e. any isometry on eMe is a unitary in eMe.

Definition 1.7. $e \in P(M)$ is **properly infinite** if e has no direct summands in M that are finite, i.e. if $p \in P(M) \cap Z(M)$ with pe finite, then pe = 0.

Example 1.3. Consider the von Neumann algebra $\mathbb{C}1 \oplus \mathcal{B}(\ell^2(\mathbb{N}))$. Then e = 1 is not a finite projection, but it is not properly infinite. If p is the projection onto the $\mathcal{B}(\ell^2(\mathbb{N}))$ part, then p is properly infinite.

Definition 1.8. A von Neumann algebra M is **finite** if 1 is a finite projection (i.e. any isometry is necessarily a unitary). M is **semifinite** if $1_M = \bigvee_i e_i$ with e_i finite.

Example 1.4. $L^{\infty}(X)$ is finite (and so is any abelian von Neumann algebra).

Example 1.5. $M_n(\mathbb{C}) = \mathcal{B}(\ell_n^2)$ is finite.

Definition 1.9. A von Neumann algebra M is type I if $1_M = \bigvee_i e_i$ with e_i abelian.

Example 1.6. $\mathcal{B}(\ell^2(\mathbb{N}))$ is type I.

Next time, we will discuss type II and type II von Neumann algebras.