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1 Geometry of Projections

1.1 Geometry of projections in a von Neumann algebra

Let M C B(H) be a von Neumann algebra, and let P(M) be the projections in M.

Definition 1.1. Projections e, f € P(M) are equivalent (e ~ f) if there exists a partial
isometry v € M such that vv* = e and v*v = f (i.e. £(v) = e, r(v) = f). We say that e
is dominated by f (e < f) if there exists fi; < f such that e ~ f; (i.e. there is a partial
isometry v € M such that vo* = e and v*v < f.

Proposition 1.1. For all x € M, {(z) ~ r(z).

Proof. This follows from the polar decomposition of z: = = v|x|. Then s(|z|) = r(x), and
x| € s(|2[) Ms(|x]). O

Theorem 1.1 (Paralellogram law). Ife, f € P(M), then (eV f— f)~(e—eA f).
Proof. The left hand side is ¢(e(1 — f)), and the right hand side is r(e(1 — f)). O
Definition 1.2. The center of M is Z(M) = M'N M.

Definition 1.3. Let x € M. The central support of x is the smallest projection z in
Z(M) such that zx = = zz. We denote this by z(z).

By taking A z;, this exists.

2; =T
Proposition 1.2. z(z) = [MzH].

Proof. Call the right hand side the projection p. Since zx = x, z > p: z = uzu™ where
v is unitary, so z > wl(z)u* for all unitary u. So z > \/, ul(z)u* = [MxH] because
span(U(M)) = M.

But px = z, and p € Z(M) because M'MxH = MazH and MMxH = MxH. By the
definition of z, p > z(x). O



Theorem 1.2. Lete, f € P(M). The following are equivalent:
1. eMf #0.
2. there exist a nonzero e; < e and a nonzero f1 < f with e; ~ fi.

3. z(e)z(f) #0.

Theorem 1.3 (Comparison theorem). Let e, f € P(M). There exists a projection in
Z(M) such that ep < fp ore(1 —p) > f(1—p).

Proof. Exercise.! O
Corollary 1.1. If Z(M) =C, thene < f ore > f.
Theorem 1.4 (Schréder-Bernstein type theorem). If e = f and f > e, then e ~ f.

Proof. Exercise.? O

1.2 Vold decomposition
Example 1.1. The left shift on £2(N) is an isometry.

Theorem 1.5 (Vold’s decomposition theorem). If v € M is an isometry (i.e. viv = 1),
then v = u®wvg, where there is a projection p with w*u = uu* = p, vgvg = 1—p, vovg < 1—p.
(So vi(vg)™ is a decreasing sequence of projections decreasing to 0. This decomposition is
UNIQUE.

Remark 1.1. If p is as above, v"(v*)™ N\, p. In particular, if py = (1 — p) — vov{, then all

v™po(v™)* are mutually orthogonal.

1.3 Factors and finite projections

Definition 1.4. M is a factor if Z(M) = C.

Definition 1.5. e € P(M) is abelian if eMe is abelian.

Example 1.2. e € B(H) is abelian if and only if e is a 1-dimensional projection.
Definition 1.6. e € P(M) is a finite projection if whenever f <eand f ~e, f=e.

This is like saying that a set E is finite if the only subset of E that it is in bijection
with is E itself.
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Remark 1.2. This is equivalent to the following: for any partial isometry v € eMe with
v*v = e, we have vv* = e; i.e. any isometry on eMe is a unitary in eMe.

Definition 1.7. ¢ € P(M) is properly infinite if e has no direct summands in M that
are finite, i.e. if p € P(M) N Z(M) with pe finite, then pe = 0.

Example 1.3. Consider the von Neumann algebra C1 @ B(¢2(N)). Then e = 1 is not a
finite projection, but it is not properly infinite. If p is the projection onto the B(¢?(N))
part, then p is properly infinite.

Definition 1.8. A von Neumann algebra M is finite if 1 is a finite projection (i.e. any
isometry is necessarily a unitary). M is semifinite if 1) =/, e; with e; finite.

Example 1.4. L>°(X) is finite (and so is any abelian von Neumann algebra).
Example 1.5. M, (C) = B(?) is finite.

Definition 1.9. A von Neumann algebra M is type Iif 157 =/, ¢; with e; abelian.
Example 1.6. B(¢?(N)) is type L.

Next time, we willl discuss type II and type II von Neumann algebras.



	Geometry of Projections
	Geometry of projections in a von Neumann algebra
	Vold decomposition
	Factors and finite projections


