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1 Geometry of Projections

1.1 Geometry of projections in a von Neumann algebra

Let M ⊆ B(H) be a von Neumann algebra, and let P (M) be the projections in M .

Definition 1.1. Projections e, f ∈ P (M) are equivalent (e ∼ f) if there exists a partial
isometry v ∈ M such that vv∗ = e and v∗v = f (i.e. `(v) = e, r(v) = f). We say that e
is dominated by f (e ≺ f) if there exists f1 ≤ f such that e ∼ f1 (i.e. there is a partial
isometry v ∈M such that vv∗ = e and v∗v ≤ f .

Proposition 1.1. For all x ∈M , `(x) ∼ r(x).

Proof. This follows from the polar decomposition of x: x = v|x|. Then s(|x|) = r(x), and
|x| ∈ s(|x|)Ms(|x|).

Theorem 1.1 (Paralellogram law). If e, f ∈ P (M), then (e ∨ f − f) ∼ (e− e ∧ f).

Proof. The left hand side is `(e(1− f)), and the right hand side is r(e(1− f)).

Definition 1.2. The center of M is Z(M) = M ′ ∩M .

Definition 1.3. Let x ∈ M . The central support of x is the smallest projection z in
Z(M) such that zx = x = xz. We denote this by z(x).

By taking
∧

zix=x zi, this exists.

Proposition 1.2. z(x) = [MxH].

Proof. Call the right hand side the projection p. Since zx = x, z ≥ p: z = uzu∗ where
u is unitary, so z ≥ u`(x)u∗ for all unitary u. So z ≥

∨
u u`(x)u∗ = [MxH] because

span(U(M)) = M .
But px = x, and p ∈ Z(M) because M ′MxH = MxH and MMxH = MxH. By the

definition of z, p ≥ z(x).
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Theorem 1.2. Let e, f ∈ P (M). The following are equivalent:

1. eMf 6= 0.

2. there exist a nonzero e1 ≤ e and a nonzero f1 ≤ f with e1 ∼ f1.

3. z(e)z(f) 6= 0.

Theorem 1.3 (Comparison theorem). Let e, f ∈ P (M). There exists a projection in
Z(M) such that ep ≺ fp or e(1− p) � f(1− p).

Proof. Exercise.1

Corollary 1.1. If Z(M) = C, then e ≺ f or e � f .

Theorem 1.4 (Schröder-Bernstein type theorem). If e � f and f � e, then e ∼ f .

Proof. Exercise.2

1.2 Vold decomposition

Example 1.1. The left shift on `2(N) is an isometry.

Theorem 1.5 (Vold’s decomposition theorem). If v ∈ M is an isometry (i.e. v∗v = 1),
then v = u⊕v0, where there is a projection p with u∗u = uu∗ = p, v∗0v0 = 1−p, v0v∗0 ≤ 1−p.
(So vn0 (v∗0)n is a decreasing sequence of projections decreasing to 0. This decomposition is
unique.

Remark 1.1. If p is as above, vn(v∗)n ↘ p. In particular, if p0 = (1− p)− v0v
∗
0, then all

vnp0(v
n)∗ are mutually orthogonal.

1.3 Factors and finite projections

Definition 1.4. M is a factor if Z(M) = C.

Definition 1.5. e ∈ P (M) is abelian if eMe is abelian.

Example 1.2. e ∈ B(H) is abelian if and only if e is a 1-dimensional projection.

Definition 1.6. e ∈ P (M) is a finite projection if whenever f ≤ e and f ∼ e, f = e.

This is like saying that a set E is finite if the only subset of E that it is in bijection
with is E itself.

1:(
2:(
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Remark 1.2. This is equivalent to the following: for any partial isometry v ∈ eMe with
v∗v = e, we have vv∗ = e; i.e. any isometry on eMe is a unitary in eMe.

Definition 1.7. e ∈ P (M) is properly infinite if e has no direct summands in M that
are finite, i.e. if p ∈ P (M) ∩ Z(M) with pe finite, then pe = 0.

Example 1.3. Consider the von Neumann algebra C1 ⊕ B(`2(N)). Then e = 1 is not a
finite projection, but it is not properly infinite. If p is the projection onto the B(`2(N))
part, then p is properly infinite.

Definition 1.8. A von Neumann algebra M is finite if 1 is a finite projection (i.e. any
isometry is necessarily a unitary). M is semifinite if 1M =

∨
i ei with ei finite.

Example 1.4. L∞(X) is finite (and so is any abelian von Neumann algebra).

Example 1.5. Mn(C) = B(`2n) is finite.

Definition 1.9. A von Neumann algebra M is type I if 1M =
∨

i ei with ei abelian.

Example 1.6. B(`2(N)) is type I.

Next time, we willl discuss type II and type II von Neumann algebras.
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